Hall-Effect Vane Sensor BBHME

INTRODUCTION

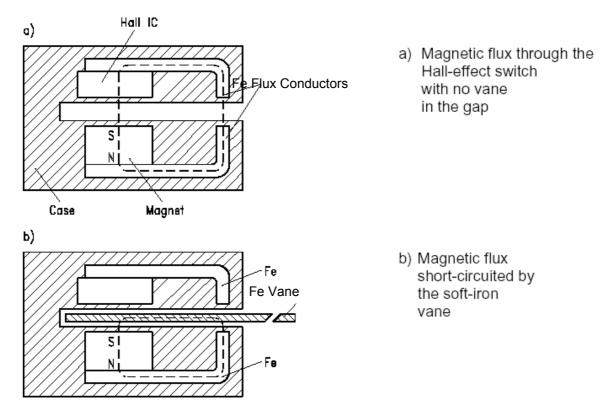
BB Automacao Auto Shaft Position Monitoring Sensors are designed to work in the conditions of automobile environment. The device is produced in compliance with the international standard and features: modern design, accurateness, endurance, narrow temperature drifting, smooth and clean output curve as well as non instantaneous dithering.

It is applicable to engines with electronic ejection.

The main applications are in automobile industry, i.e. as a breakerless trigger in electronic systems, in control engineering, especially in those areas where switches/sensors must operate maintenance-free under harsh environmental conditions, e.g. rpm sensors, limit switches, position sensors, speed measurements, shaft encoders, scanning of coding disks etc.

It can be a replacement for the similar products of SIEMENS or MITSUBISHI or HONEYWELL companies.

FEATURES


- Contactless switch/sensor with open collector output (40mA)
- Static switching/sensing
- High switching/sensing frequency
- Hermetically sealed with plastic
- Unaffected by dirt, light and vibration
- Large temperature and voltage ranges
- Integrated protection of overvoltage etc.

The Hall Effect vane sensor series BBHME is a non-contact sensor/switch, which consists of a monolithic integrated Hall Effect circuit and a special magnetic circuit hermetically sealed in a plastic package. The sensor is actuated by a soft-iron vane passing through the air gap between magnet and Hall sensor.

MEASURING PRINCIPLE

The Hall Effect vane sensor consist of a Hall IC and a permanent magnet (SmCo, NdFeB disc or block), which are hermetically sealed in plastic (see the following figures). The sensor is actuated by a soft iron vane that passes through the air gap between the magnet and Hall IC. The open collector output is conductive (low) when the vane is outside the air gap (see Fig. a), and blocks (high) when the vane moves into the air gap (see Fig. b). The output remains high as long as the vane positions in the

air gap. This is the so called static function. The output signal shape is in this case independent on the operating frequency.

Overvoltage is integrated in the circuit in order to protect against most of the voltage peaks occurring in automotive and industrial applications. The output stage has a Schmitt trigger characteristic. Most of electronic circuits can be driven directly thanks to the open collector output current of maximum 40mA.

MECHANICAL CHARACTERISTICS

The Hall Effect vane sensor is hermetically sealed in a special plastic package, so that it can also be used under harsh environmental conditions. The package is waterproof, resistant to vibration, gasoline, oil and salt. Two tubular rivets are incorporated in the package to mount the sensor on the carrier plate. The sensor has three leads for power supply, output and ground.

Supply Voltage	30V
Reverse Battery Voltage	- 40V
Output OFF Voltage	40V
Reverse Output Voltage	- 0.5V
Output Current (at T _A =25°C)	40mA for 5 minutes max
Operating Temperature Range	- 40°C~ +150°C

ABSOLUTE MAXIMUM RATINGS

BB AUTOMACAO

www.bbautomacao.com

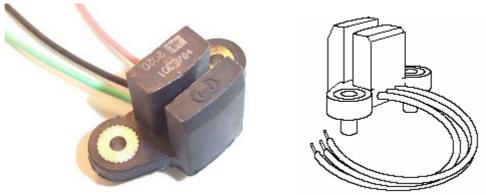
ELECTRICAL CHARACTERISTICS at Vcc=12V

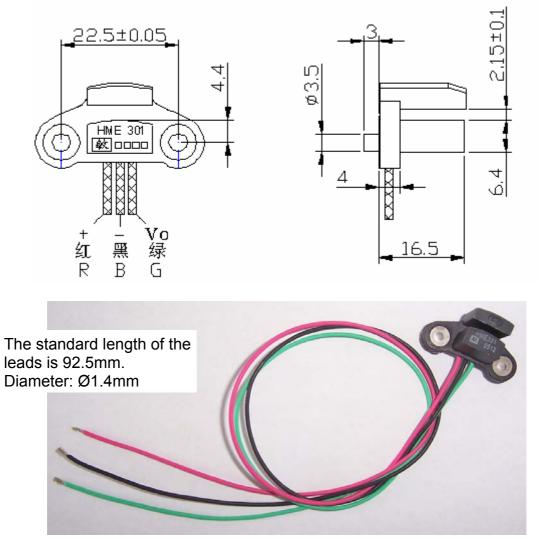
Supply Voltage	4.5V~24V
Supply Current	≤9mA (HME402≤16mA)
Output Saturation Voltage(Sinking 20mA)	≤0.4V
Output Leakage Current	≤10uA
Output Rise Time	≤2uS
Output Fall Time	≤2uS
Output type	NPN (OC)

MECHANICAL PARAMETERS

Part number	De(mm) operation distance		Da(mm) release distance			
	Min	Тур	Max	Min	Тур	Max
CYHME301	0.85	1.45	2.05	1.54	2.29	3.04
CYHME56	0.85	1.45	2.05	1.54	2.29	3.04
.CYHME2000	0.85	1.45	2.05	1.54	2.29	3.04

CROSS REFERENCE

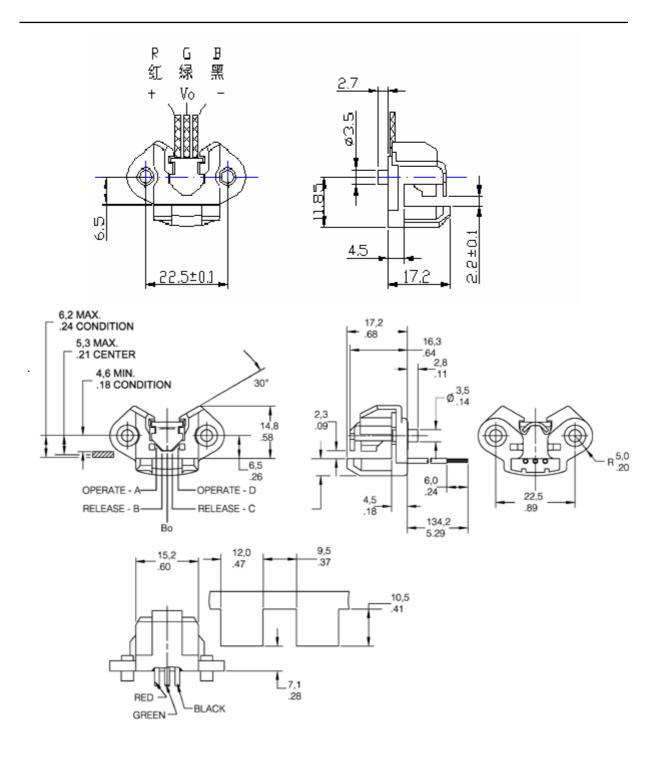

Part Number	Replacement
CYHME301	HKZ101, HKZ101S, HKZ121
CYHME56	2AV54, 2AV16A, 2AV51A, 2AV56、2AV63
CYHME2000	2AV31E-J


MOUNTING DIMENSIONS (for reference only)

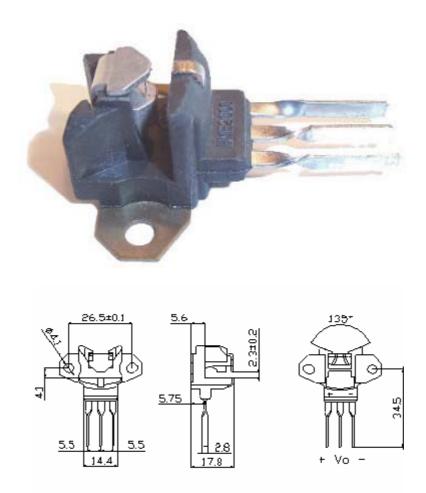
Main Product:

BBHME301, BBHME56, BBHME2000

BBHME301



The type and length of the leads can be made according to customer's requirements


BBHME56

The standard length of the leads is 92.5mm Diameter: Ø1.4mm

BBHME2000

Application Notes

The output of these sensors is sinking current (OC, open collector). A pull-up resistor ($1k\Omega \sim 10k\Omega$) should be connected to the sensor output circuit (between power supply + and output).